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ABSTRACT

Thin targets of low atomic number were assumed to be bombarded

with Z5-Mev electrons, 600-kv X rays ant4 prompt fission gamma radiation.

The resulting hiqh-energy secondary electrons were calculated theoretically

on a high-speed digital computer with respect to their intensity, energy

losses, energy spectra and angle of emission spectra. The results show

that 25-Mev electrons, 600-kv X rays and prompt fission gamma radiation

produce a maximum efficiency of high-energy secondary-electron emission

of 8. 0, 0. 05, and 0. 3 percent, respectively. Experimental results from

ZS-Mev electron irradiations agree very closely with these theoretical

numbers. An experiment is planned for the 600-kv X-ray radiation source.
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1. INTRODUCTION.

a. Objective

(1) To aid in the simulation of the prompt fission gamma radiation

field associated with a nuclear detonation by comparing the efficiencies of

secondary-electron emission, energy spectra, angle-of-emission spectra,

and energy losses for various laboratory radiation sources. Interest will

be concentrated on ZS-Mev electrons from a linear accelerator and a

600-kv pulsed X-ray source.

(Z) To establish computer programs which can be used in

transient radiation effects (TREE) studies to simulate any desired radiation

energy source.

b. Backgroun

The basic parameters for work in transient radiation effects have

not been determined satisfactorily. This study was necessary because in

weapon effects work instrumentation may be exposed to radiation fields

as high as 10 l - r/sec. This extreme flux will cause electronic components

to fail; therefore, the components must be tested beforehand in the laboratory

to establish and possibly eliminate the effects expected in the nuclear en-

vironment. This work will permit the laboratory work to be done much more

accurately.

Z. SECONDARY ELECTRON EMISSION BY PROMPT FISSION GAMMA

a. General remark

In this section a theoretical calculation is made of the energy

spectra, the angle-of-emission spectra, the energy losses, and the efficien-

cies for secondary electrons emitted because of prompt fission gamma

radiation. The calculation was done for low-Z materials with thicknesses

I
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2in the range from 0.01 to 10 gm/cm . The Maienschein (1958) prompt

fission gamma ray spectrum for UZ 3 5 fissions was used during the time

interval less than 5 x 10- 8 second. The Klein-Nishina cross sections were

used to evaluate the above parameters.

There are three ways in which a photon can interact with matter to

lose its energy: interaction with an atom as a whole, interaction with a

free electron, and interaction with the Coulomb field of the nucleus.

The interaction of a photon with an atom as a whole leads to the

photoelectric effect. The importance of this effect in the field of high

energies and low-Z materials is negligible, so that it need not be considered

in detail. The interaction of a photon with a free electron leads to the Compton

effect. In this phenomenon the photon transfers part of its energy and mo-

mentum to the electron initially at rest. The interaction of a photon with the

Coulomb field of the nucleus leads to the phenomenon of pair production.

whereby the photon disappears and a positive and a negative electron

simultaneously come into existence. For this phenomenon to occur, the

energy of the photon must exceed the rest energy of two electrons. The

excess energy appears almost completely as kinetic energy of the two

electrons, while the recoil of the nucleus accounts for the momentum balance.

Pair production predominates in the high-Z, high-energy region, whereas

the Compton effect predominates in the low-Z, intermediate-energy group

(figure 2. 1) which is the region of interest in this report.

Both the Compton effect and pair production are typical quantum

phenomena without a classical counterpart. Their description requires the

use of quantum electrodynamics along with quantum mechanics.
b. Theo"

(1) Conservation laws for the Compton effect

As was stated above, the area of interest in this report is

the area in figure 2. 1 labeled the Compton effect.

In figure Z. Z, the incident photon is represented by an energy

hv0. The scattered photon is emitted at an agle q with an energy hv, and
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the electron recoils at an angle e with a momentum p and a kinetic

energy T. The relations for the conservation of momentum for this

collision can now be written, remembering that the momentum of a photon

is h.. Conservation of momentum in the direction of hv is expressedc o
by

hv hv0 _ cos q + p cos6 (Z.I)
C c

while conservation of momentum normal to this direction gives

0 =- ] - sin q - p sin * (2.2)

A third relation between these variables is obtained from the conservation

of energy,

hv = hv + T. 42.3)

Using the relativistic relationship

p T C z(. 4)

pc- (T+ zm ° c2
0

and some algebra, one can eliminate any two parameters from these three

equations. It should be noted that these equations represent only the funda-

mental conservation laws as applied to a two-body collision. They must,

therefore, be obeyed regardless of the details of the interactions at the scene

of the collision.

To describe the angular distribution of the Compton electrons

3
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and to take into account the true distance they travel through the sample, it

is necessary to derive by the proper combination of the four preceding

equations the following equation for the energy of the Compton electron in

terms of its scattering angle:

2

T = hv Z( Cose (2. 5)
(1 + a) - Z cos o

where a = hv 0 /m 0 c2 . The details of this derivation can be found in the

appendix of Semat (1958).

(2) Klein-Nishina cross sections

Because classical methods cannot cope with the general collision

involving high-energy photons, Klein-Nishina successfully applied Dirac's

relativistic theory of the electron to this problem and obtained a general

solution which is in remarkable agreement with experiments.

The summation of the probabilities of all possible collisions

between the incident photon and each free electron is generally the total

collision cross section. Because it represents the integrated probability

per electron that some scattering event will occur, it is physically clearer

to speak of this integral as the average collision cross section a . The

average collision cross section is the same for polarized or unpolarized

incident radiation. By integrating the differential cross section over all

permissible angles, one finds the following result:

0 Zr~tj~ [LLLJI In (I + c]

+ - In(l + Za) - + 3 a  cm 2 /e (Z.6)

2 a (I + ZQ) 2 j

where r is the classical electron radius.

4
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Experimental interest often centers on the average properties

of the scattered radiation; thus, the average scattered cross section o s is

Z[- In ( + Za) + /(1 + a) -2-2)ds = itr° 1 aln(I++22)) 2

0 au a ( 1 + 2a)

+ 8 3a cm/e.(.7
3(1 + Za) r

The total cross section or average collision cross section is

given by

a 8 + 8 (2.8)a s

where o a is the average absorption cross section. Thus.

a - Z. 9)i s

or

2 2
a  2 r z [2 U + a)' .i.(,I+ )| Za Za- 1)
a 0 z 1 + ZQ) (1 +Z) 2 7 a z1 + 2a) z

. 4at ./ - (L3a - I+ In 11 + Z(L c2/

3(1 + Za) 3  a3 2a a 3

(2. 10)

From the conservation of energy, equation (2. 3), each

scattered photon hv has associated with it a recoil electron whose energy

is

T= hv -hv. (2. 11)

5
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Therefore, the average kinetic energy TAV of all recoil electrons from

Compton interactions will be

TAV =hv0 - hv AV (2. 12)

Hence

TAV- I - hvAV = 1 - = da (M. 13)

0 0

(Evans, 1955, p. 688).

An electron born with an average energy TAV , scattered at

an average angle 0 AV' and at a given distance Rn in the sample with

respect to the escaping interface, has a true distance of Rn/cos 0 AV to

traverse before escaping from the sample. Therefore, to account for the

angular distribution it is necessary to derive an expression for the cos 0 AV

By solving equation (2. S) explicitly for cos e and taking an average value

for 0 and T, one gets

ITAV (I + )2

coo OAV TA z + Za hv

All the pertinent parameters needed to describe the interaction

between an incident photon and an atomic electron have now been derived.

Now, the theory necessary for calculating the number of secondary electrons

produced per incident particle will be developed.

(3) Secondary electron production

N
In a thin absorbing sample, having 71 atoms/gm, each

with Z electrons/atom, and of a thickness AR in gm/cm 2 . there are

6
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NZAR

electrons/gm and N electrons/cm 2 . Let a collimated beam of nA 0

particles, each with energy E o0 6 pass normally through the sample (figure

(2. 3)).

The number dn = n0 - n is the number of primary particles

giving up some of its energy to produce secondary electrons. Therefore.

the number of secondary electrons per incident particle produced in AR is

N N Z 6 R o (2. 16)
n A0

. dn will be redefined to equal S: therefore, equation (2. 16) becomes
n

0

N Z LR c (E)a( ) (2. 17)

with its energy functional dependence included. The constant in equation

(2. 17) can be evaluated by assuming A = 2Z (low Z materials) and its

value is 0. 30125 x 1024 electrons/gm or 0. 30125 c m  Therefore,

equation (2. 17) becomes

S(E) = 0. 3012S AR o(E) (2. 18)

where S(E) is in secondary electrons per incident particle, UR is in
2gm/cm . and o(E) is in barns/electron. This is a general derivation

since the incident particle can be a gamma ray. an electron, or an X ray

if the appropriate cross sections are taken into account.

Now that the number of secondaries produced per incident

particle in a differential element AR have been determined, it is

appropriate to evaluate the number of those produced which escape and

the number which are deposited.

7
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(4) Probability of escape and deposition

Since the range of any one of a group of initially monoenergetic

particles can be regarded as the sum of a very large number of statistically

independent displacements corresponding to a succession of small energy

losses, it should be expected that the probability distribution of the ranges

about the average value, R , is given by the Gaussian function. The width

of the Gaussian curve will be proportional to the mean squared fluctuation

(R-A) 2AV . Thus the probability of finding a particle with range between R

and R+ dR is (Segre. 1953. p. 245)

Pe(dR - exp [ (R-R) dR (. 19)

where

(R A - = P(R) (R-) 2 dR. (2. Z0)

Experimentally. it is not very convenient to make direct

measurement of the number of particles whose ranges end in the interval

from R to R+ dR. Instead. the number of particles which reach a certain

distance R from the source, that is, particles whose range is greater

than R. are usually measured.

Equation (2. 19) can be integrated from R to infinity to give

Pe (R)= 'All - orf&-.) (2. 21)

where P (R) is the probability of escape or the intensity of the electrons as
a function of distance (the ordinate of the number-distance curve in figure
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2
2. 4), er x = fXe-t dt is the error function or the probability integral,

and a is the range-straggling parameter (the half-width of the Gaussian

distribution at /e of the maximum). The quantity a is also equal toV/'Z

times the standard deviation, o . The slope of the curve in figure Z. 4 is

equal to 1/a ai. Therefore, the relationship between the practical Rp and

average ranges R is

.5 _ I (2. 22)
Rp- R a-R "

Solving explicitly for the range straggling parameter a , one finds the

following relationship

(R - R). (2. Z3)
vi P

To evaluate the probability of escape or the probability of

being deposited Pd(E) which is by definition [I - Pe(R)] , it is only

needed to determine the practical and average ranges.

(5) Range of electrons.

Empirical relationships between the practical range Rp and

the energy E. have been proposed by many workers. An excellent review

of all electron range-energy work up to 1951 has been given by Katz and

Penfold (1952). Based on a compilation of all available data, these authors

propose the following empirical relationships, where E is in Mev and R

is in gm/cm 2 . For energies from 0.01 to -3 Mev

R 0. 4 1Z En

n 1. 265 - 0.0954 ln E (Z. 24)

9
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and for energies from -I to ~20 Mev

R = 0. 530 E - 0. 106. (2. 25)
p

The agreement between the above empirical analytical forms and experi-

mental range-energy curves is excellent. This fact can be observed in

figure 2.5.

By comparing the average range R and the practical range

R of the experimental absorption curves given in figure 2. 6. the relation-p
ship relating then. averaged, gives

--0. 662 R . (2.26)

The three preceding equations will be used for determining the average

range of an electron as a function of energy.

Now, it is possible to evaluate equation (2. 23) in terms of

the average range R. The result is

a= 0. 5762 R. (2. 27)

(6) Number and energy losses.

The total number of secondary electrons born per incident

particle in. LR is S(E) given by equation (2. 18). The probability of these

electrons escaping from ,R is P (E). Therefore, the fraction of secon-

daries which escapes per incident particle Se (E) is

S e(E) = S(E) Pe (R) (2. 28)

10
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or

S (E) = 0.30125 L R 0 (E) P e(R) (2. 29)

By the same argument, the number of secondaries deposited

per incident particle Sd(E) is

Sd(E) = S(E) Pd(R). (2. 30)

Sinc e,

Pd(E) 1 - Pe(R) (Z. 31)

Equation (Z. 30) can be written in the form

Sd(E) S(E) [1 - Pe(R)] (2. 3)

or

Sd(E) = 0. 30125 ,,R i(E) [1 - P(R)] (2.33)

The total number of secondaries produced per incident particle is also

equal to

S(E) = SeE) + Sd(E). (2.34)

The energy which is lost from the sample would be equal to

the number which escape Se(E) times the electron energy of escape E e

Ez = EeSe(E) . (2. 35)

Conversely, the energy deposited is the sum of the energy

deposited by the electrons which escape and the energy deposited by the

electrons that did not escape.

11
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Ed (E - Ee) Se(E) + E Sd(E) . (2. 36)

Equation (2. 36) can also be written in the following form:

Ed = E S(E) - E e S eE) (2. 37)

by combining and substituting equation (U. 34). The energy lost E, and

the energy deposited E d are in units of Mev. To change units to Mev/gm/

cm 2 , it is only necessary to divide by the sample thickness T.

(7) Energy losses by gamma rays

The energy losses by gamma rays can be determined by use of

figure Z. 7. By a weighted average of the prompt fission spectrum, figure

2.8, it was found from figure Z. 7 that

1 L- = S.3 x 105 Mev/cm2 • sec.
hr

By eliminating time, 1 r is 1. 91 x 109 Mev per cm 2 and deposits

100 ergs/gm of material or

I x = 5.24 x 10- 8 ergs/gm.

cm

Approximately 7. 7 Mev/fis are liberated when an atom of U2 35 fissions.

Therefore the energy deposited per unit thickness per fission in a sample

material is

2
1 fission = 0.252 l.ev/gm/cm

However, the soft collisions (low-energy secondary electrons) cause

approximately half of this energy deposition. Therefore since the interest

is in the hard collisions (high energy secondary electrons), the above number

will be divided by two with the result

1 fission = 0. 126 Mev/gm/cm

1z
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c. Procedure

The calculations in this report were made on a CDC 1604 high-

speed digital computer. The programs and sample outputs are contained

in the appendixes. To simplify the explanation of the calculational procedure,

a slide-rule accuracy example will be presented. The calculations were done

for sample thicknesses in the range from 0.01 to 10 gm/cm

(1) Energy groups

The Maienschein (1958) energy spectrum, figure 2. 8, for

prompt fission gamma radiation from U2 3 5 fission for times less than

5 x 10 - 8 seconds, was used in the gamma-ray program. This spectrum was

considered to be the best available for this type of calculation by several of

the prominent people in the field. The average gamma ray energy from this

spectrum was determined and found to be approximately 0. 85 Mev. The

number of gamma rays per fission was found to be 9.1 with energy being

emitted at a rate of 7. 7 Mev/fission. All this information was evaluated by

choosing a ,iE of 0. Z Mev on the abscissa and reading the average ordinate.

Table 2. 1 contains the results of the average ordinate multiplied by AE as

a function of the appropriate energies. The number of gamma rays per

fission N was used as a weighting factor in determining the following

parameters.

The energies of the incident photons were divided up into 39

groups as shown in table 2. 1. The average energy of the group was chosen

as the representative photon; for example, the first group with energies

between 0. 0 and 0. 2 Mev has an average photon energy of 0. 1 Mev.

(Z) Sample division

The sample was divided into iiRs with thicknesses decreasing

by one-half each time, figure Z. 9. The numbers n represent the center

lines of each i R. The quantity Rn represents the shortest distance a

secondary electron would have to travel before escaping. These quantities

are related mathematically by the following relationships:

13
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R,- T RI T

R R1  ,'Rz - LZR (2. 38)

Rn.R
2 n-in n-1-

Rf 4 Rf 1  LRf = 2 Rf

The final R n was chosen to be greater than 5 x 10- 4 gm/cm Therefore,

the final R must be equal to or less than 3 1/3 x I0 "4 gm/cm Z, or AR
-4 2must be equal to or less than 6 2/3 x 10 . gm/cm 2 . There were 5 divisions

or 4Rs for a sample thickness of 0. 01 gm/cm 2 ranging to 15 divisions for a
2thickness of 10 gm/cm

(3) Attenuation

In the passage of gamma-ray photons through matter, they are

absorbed so that the intensity falls off exponentially. This arises from the

fact that the extent of absorption in a small thickness dR in gm/cm 2 of

matter, at any point in the medium, is proportional to the radiation intensity

at that point and to the thickness traversed; that is,

dI - dR (2.39)T- P

Integrating this equation gi'es

-,E R
I = 1 0 e (2. 40)

where l is the linear absorption coefficient of the absorber for the given

radiation. If A 2Z, then I/p = 0. 30125 a, where o is the total cross

section in barns. Therefore, equation (2. 40) becomes

14
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- 0.30125 o (T - R (2.41)

where T and R n are the same quantities as defined in figure Z. 9. The

attenuation factor A is

A -0 30125 o (T - RA - e n (Z.42)

This factor was multiplied by the secondary electron emission efficiencies,

equations (2. 29) and (2. 33), to take into account the attenuation of the

incident gamma rays.

(4) Sample problem

The parameters in table 2. 2 will be used in the following sample

calculation.

In the beginning, equation (2. Zl), the probability of escape P ,

was investigated:

P (R) (1 - erf R - R (2.Z)

Notice, if R R the argument of the error function is zero; hence, the

error function is zero making Pe(R) = 0.5, which is the correct value.

As R approaches infinity the error function approaches 1, thus,
p (o) = 0, which is a correct value. However, on the other end wheree
R = 0, the argument of the error function becomes, by employing equation

(Z. V7), a negative 1/0. 5762. This makes the error function take on a

value of negative 0. 98588; hence, the P e(0) = 0. 99Z94. This value should

be exactly 1, since the electron does not have to travel any distance (R = 0);

thus, the P e(0) must equal 1. Therefore, 0. 99294 was used as a scaling

factor for the probability of escape Pe.

The next step was to evaluate the cross sections for the energy

group of incident photons chosen. In this case the group lies between 1. 0

and 1. Z Mev of table Z. I with an average photon energy of 1. 1 Mev. The

15
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<hv >
quantity, a = z , is evaluated and in this case equals Z. 155.

m c
0

Substituting this value in equations (Z. 6) and (Z. 10), then evaluating, one

finds

o = 0. Z015 barns

and

o a 0. 0913 barns.
a

From equation (Z. 13), the average kinetic energy TAV of the recoil

Compton electron is

d

TAV = AV <o > A - 0.499 Mev.

By a careful investigation of equations (Z. 24) and (2. 25). it

was determined that an energy of Z. 4 Mev would be the best cutoff point

between the two equations. Therefore, since the above energy is less than

Z. 4 Mev, equation (Z. Z4) was used in combination with equation (2. 26),

giving

R= .7 3 En

(Z. 43)
n 1. 65 - 0. 0954 In E

In this case E is TAV and evaluating equation (Z. 43) for the above TAV

gives

A (0. 499) = 0. 1081 gm/cm

The average kinetic energy TAV and range R for the Compton

electron have been determined. The next most important thing to calculate

is the cosine of the angle of emission. As given by equation (Z. 15), this

16
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quantity can be evaluated immediately.

Cos 0 AV : 0.839.

The probability of escape was determined by equation (2. 21)

to be

P (R) U.. (1- erf
en 2a

To get a physical meaning of this quantity, figure 2. 10 is presented. Notice

that R is the actual distance the electron travels and R is the distancen

from the center line of the appropriate L1R to the interface (shortest

distance). The quantities R and Rn are related by the following equation:

R= Rn/Cos 0 AV (2. 44)

In this problem. R = 0. 23. The probability of escape, using the above

parameters, is

PeZ (R) = 0.0047.

The attenuation A of the incident beam will be determined by

employing equation (Z. 42). The result is

A = 0.98121

Finally, the secondary electron emission efficiencies may be

calculated. Equation (2. 29) gives the fraction of secondary electrons which

escape per incident particle and takes the following form when the attenuation

is included:

S (E) 0.30125 uR o(E) P (R) A (Z. 45)
en n en n

17
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Substituting and evaluating equation (2. 45) for this sample problem gives

S 2(1.1) = 3. 486 x 10 . se/iy

To properly weight this number for the entire prompt fission spectrum

(figure 2. 8). the number of gammas per fission Nm  from table 2. 1 for

the energy group from 1. 0 to 1. 2 Mev was multiplied by the above number.

This gives

SeZ U.1) = 1.743 x 10 . se/fis

To determine the number given in column 7 of appendix A for this energy

group, the above number must be added to the contribution for all the other

ARs; i.e., column 7 is a sum on R.

R
S(E) = N (E) Z S (E) (2.46)

n= en

Notice that this number is very small compared with the number given

(2. 614 x 103 ). Thus. this indicates that most of the electrons which escape

come from the final "Rs. Column 8 is a double sum on R and E . It is

also weighted by the numbers given in table 2. 1 in the following way:

E
zS (E)

S m= I em (2.47)
e E

Z N
m= 1 m

18



TDR-63-50

or by substituting equation (2. 46)

Z [Nm ZR Sen (E)

S e m- [Nm n= 1 (2. 48)

e

E
Z N

m-- 1 m

The final number Se in column 8 is the total number of secondare e

of 0. 5 gm/ c m , S e is 2. 952 X 10 " 3 .

The number of secondaries per incident particle which are

deposited is determined in a similar manner. Equation (2. 33) becomes

Sdn (E) = 0. 30125 AR n , (E) [I - P en(R) An  (2.49)

after taking the R dependence and the attenuation into account. Substituting

and evaluating equation (2. 49) gives

Sd2 (1.1) = 7. 40x10 - 3 se/iy

However, the number in column 9 is given as a sum on R and is weighted

by the numbers in table 2. 1; for example.

Sd (1. 1) = 3.705 x 10 se/fis .

Notice that this number is approximately equal to the one given (I. Z39 x 10z),

thus indicating that most of the electrons deposited come from the first ARS.

Column 9 is the following sum:

R
Sd (E) - N (E) Z Sdn(E) (Z. 50)

n= I
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in secondaries per fission. Like the preceding discussion, column 10 is

z N - S dn (E]

Sd = =1 [ n= 1 (2.51)
E
z N

m=1 m

in secondaries per incident photon.

To calculate the energy of escape, it is necessary to recall

the probability function and a diagram for simplification, figure 2. 11. The

area under the curve to the right of Pe (R) represents the probability of

escape and is equal to the value given for P e(R) . Since the curve

is Gaussian, the area under the entire curve is unity. Therefore, the re-

maining area is the probability of being deposited [Pd(R) = I - Pe (R)]

To determine the average energy of escape E e I it will be necessary to go

to the mid-point of the remaining area, which is the same as takinghalf of

the actual probability of escape Pe (R) , and work backwards through the

probability function. Thus

P (Re) = P (R) (Z. SZ)
e e e

The energy of escape is related to the range which remains after escape.

Therefore, it is interesting to determine the range which is left over,

namely

IR = R - R (2.53)e e

The energy can then be calculated from the semi-empirical range-energy

equations given in a previous subdivision. From figure Z. 11, the following

relationship can be derived by arrangement of parameters:

AR= R + R - R . (2.54)

z0
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Notice that the argument of the error function from equation (Z. 5Z) is the

quantity e Therefore, by solving equation (2. 52) for this

quantity and substituting it in equation (2. 54), ARe can be solved since

the other quantities are known.

For example, in the sample problem Pe (R) = 0. 0047

equation (Z.52) give Pe(Re) = 0.00Z35. since

(( - erf R - )Pe R)= 

Solving this equation for the argument of the error function gives

• -- = Z. 007

Substituting in equation (Z. 54) and evaluating give

LR e - =9.45 x 10 3 gm/cm 2

By choosing the correct range-energy equation for this ARe and solving

it explicitly for energy, it is found that

E e= exp [. 265 - 1/1. 6 -0. 16 In (&Re/O(Z.75)

Solving equation (Z. 55) gives

E = 0.103 Mev.

The energy lost from the sample was caluclated using
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equation (2. 35).

EIn (E) = Een Sen (E)

E.2 (E) = 1.8 x 10-6 Mev/fis

This is not equal to the number (8. 448 x 10 . 4 ) given in column 3 for the

energy group because column 3 is a sum on R . Hence, column 3 is

R
E fE) = Z Een S en(E). (2.56)

n= e

Column 4 is a double sum taking the following form:

E R
E = E E S IE) (2.57)m 1n emn emn

Likewise, columns 5 and 6 take the same form as shown above but they

represent the energy deposited. Equation (Z. 36) gives the energy de-

posited:

Edm(E) E - Ee) Sem (E) + E Sdn(E)

Ed - (E) = 1.89 x 10 . 3 Mev/fis .

This is approximately equal to the number given in column 5 (6.720 x 103

indicating that most of the energy which is deposited occurs in the first LRs.

Column 6 is the energy deposited summed on R and E .

The second set of data in the appendixes represents the

parameters for the energies of escape. Columns I and 2 represent the

energy bands for the secondary electron energy of escape. Column 3 is
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the number of secondaries per incident particle Se which escape in that

energy band. Column 4 is the average angle of escape in degrees for electrons

which escaped in that energy band. Column 5 is the product of the average

energy for the group times the number of secondaries per incident particle

which escape (E Se). The energy spectra to follow were plotted using this

data.

The final set of data in the appendixes gives the angular distri-

bution. Columns 1 and 2 are the lower angle limit and upper angle limit,

respectively. Notice that the angular interval was chosen to be 2 degrees.

Column 3 is the number of secondaries emitted in that angular interval. The

angle-of-emission spectra to follow were taken from these data.

d. Results

The results are contained in table 2. 3 (Energy Losses and

Secondary Electron Emission Efficiencies as a Function of Thickness for

Prompt Fission Gamma Radiation) and table 2. 4 (Number of Secondaries

which Escape as a Function of Energy. Average Angle of Emission and

Thickness for Prompt Fission Gamma Radiation). The data contained in

table Z. 3 can be found plotted in figures 2. 1Z - 2. 15, and table 2. 4-Z. 5 data

are in figures 2. 16 - 2. 27.

Figure 2. 12 gives the number of secondaries escaping Se as a
ze

function of thickness. Notice that at a thickness of 0.01 gm/cm , Se is

4.7 x 10 4 secondary electrons per incident photon (se/iy) with a constant

increase with thickness to approximately I gm/cm 2 where the curve reaches

a maximum value of 3 x 10 "3 se/iy (0. 37); thereafter it begins to decrease

with thickness to a value of 2 x 10 "3 se/iy at 10 gm/cm z . The incrense is

due to more atomic electrons being made available and the decrease is due

to the attenuation of the incident beam.

Figure 2. 13 is a plot of the number of secondaries deposited Sd as

a function of thickness. It forms a straight line on log-log paper. This
-3 /i at020g/mt

function increases with thickness from 7 x 10 3 se/i at 0. 0 gm/cm 2 to

23
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2
0. 9 se/iy at 10 gm/cm . This seems reasonable since one would expect

more secondary electrons to be deposited as the thickness is increased.

In figure 2. 14. the energy of escape per unit path length is given as

a function of thickness. It is shown that the energy loss E. is greatest for

small thicknesses (Eg = 1.45 x 10 " Mev/gm/cm 2 ) and decreases to 1.25 x

10 . 3 Mev/gm/cm 2 for large thicknesses (10 gm/cm2 ). which is as expected.

Figure 2. 15. the energy deposited as a function of thickness, follows.

the reverse of figure 2. 14; that is, the energy deposited increases with

thickness. It should be observed that upon adding the curves in figures 2. 14

and 2. 15 point for point the total energy removed from the incident beam is
2

0. 170 Mev/gm/cm . This is in good agreement with the number predicted

in section 2b(7) (0. 126 Mev/gm/cm ).

Figures 2. 16 to 2. 26 contain the energy and angle-of-emission

spectra for prompt fission gamma radiation for thicknesses in the range
2from 0.01 to 10 gm/cm . The energy spectrum is a plot of the number of

secondaries escaping per incident photon per energy interval, Se as a

function of the energy of escape E e .

Figure 2. 27 contains all the energy spectra so one can get a relative

perspective of their intensities as a function of thickness. Notice that the

intensity increases with thickness up to 0. 75 gm/cm 2 and then decreases.

The most probable energy of escape E e occurs at approximately the same

value (0. 15 Mev) for almost all the thicknesses except the larger ones where

the peaks are broader, making the most probable energy of escape less

pronounced.
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Table 2.2

Parameters for Sample Problem

Parameter Value

T (thickness) 0.50 g/cM2

hi' 0 1.0 -1.2 May

< hv O>AV 1.1 Mev

R2 0.1875 9m/cm2

R2 0.1250 gn/CM2
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Table 2.3

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of

Thickness for Prompt Fission Gamma Radiation

T E1  Ed Se  Sd

(gm/cm 2 )  'ev.cm2/Sm.fis)** (Mev.czX/m. fin)** Cseiiy ) (eiy)

10.0 1.20-3* 1.69-1 1.91-3 9.25-1

5.0 2.94-3 1.68-1 2.46-3 4.61-1

2.5 6.51-3 1.64-1 2.81-3 2.29-1

1.0 1.71-2 1.53-1 3.02-3 8.97-2

0.75 2.26-2 1.48-1 3.03-3 6.66-2

0.50 3.24-2 1.38-1 2.95-3 4.35-2

0.25 5.37-2 1.17-1 2.61-3 2.06-2

0.10 8.54-2 8.49-2 1.92-3 7.39-3

0.05 1.08-I 6.29-2 1.36-3 3.29-3

0.025 1.27-1 4.36-2 9.05-4 1.42-3

0.01 1.45-1 2.52-2 4.69-4 4.63-4

1.2 x 10-3

414 9.1 gammas/fis
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Figure Z. Z Trajectories in the scattering plane for the incident
photon hv ° , the scattered photon hv . and the

scattered electron which acquires momentum pand kinetic energy T (from Evans, 1955. p. 675)
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Figure 2. 3 A thin absorbing
sample
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Figure 2. 4 The number-distance curve for an electron with
energy E, i. e., monoenergetic particles.
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Figure Z. 8 Energy spectrum of prompt fission gamma
rays from U1Z35 fission for times less than

Sx10-8 seconds
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T

H't2

Figure 2. 10 Diagram of the probability of escape Pe
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T

-R*

Figure Z. 11 Diagram for the calculation of the energy of
escape E e
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3. SECONDARY ELECTRON EMISSION BY ZS-MEV ELECTRONS

a. General remarks

Let us very briefly look at the electromagnetic phenomena that are

of importance in the interaction with matter of high-energy charged particles.

such as 25-Mev electrons from a linear accelerator (linac). We will con-

sider first the phenomena that occur when a charged particle passes in

the neighborhood of an atom.

(I) If the distance of closest approach is large compared with the

dimensions of the atom (10 "8 cm). the atom reacts as a whole to the variable

field set up by the passing particle. The result is an excitation or an ioniza-

tion of the atom. The phenomenon can be treated by the ordinary methods of

quantum mechanics without direct reference to radiation. For these compara-

tively distant collisions, the magnetic moment of the particle is of secondary

importance, because the forces associated with the magnetic moment de-

crease as the third power of the distance, whereas the Coulomb forces

decrease as the square of the distance. Therefore the passing particle can

be considered as a point charge.

(2) If the distance of closest approach is of the order of atomic

dimensions, the interaction no longer involves the passing particle and the

atom as a whole, but rather the passing particle and one of the atomic

electrons. As a consequence of the interaction, the electron is ejected from

the atom with considerable energy. This phenomenon is often described as

a knock-on process. If the energy acquired by the secondary electron is

large compared with the binding energy, the phenomenon can be treated as

an interaction between the passing particle and a free electron. Radiation

phenomena can still be neglected, and the ordinary methods of quantum

mechanics can be used. However, one can no longer neglect the magnetic

moments or spins of the interacting particles. When the particles are

identical, exchange phenomena occur and acquire special importance when

the minimum distance of approach becomes comparable with the DeBroglie

wavelength. This collision process will be described as an elastic collision

with atomic electrons.
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(3) When the distance of closest approach becomes smaller than

the atomic dimensions, the deflection of the trajectory of the passing particle

in the electric field of the nucleus becomes the most important effect.

Classically, each deflection results in the emission of a weak electromagnetic

radiation with a continuous frequency spectrum. Numerous soft quanta, whose

total energy is usually a very small fraction of the particle energy, accompany

the deflection. In few cases, however, one photon of energy comparable with

that of the particle is emitted. Because of the comparatively small probability

of this eff,ct, the problem of the scattering of particles can be treated

separately from that of radiation or bremsstrahlung.

(4) The problem of computing the probability of photon emission by

the passage of a charged particle through an atom requires the application of

quantum electrodynamics. As in the scattering problem, the atom is still

represented schematically by a central field of force. However, the

Hamiltonian of the system, which in the scattering p "oblem consisted of the

Hamiltonian of the particle exclusively, now contains also the Hamiltonian

of the electromagnetic field and a small interaction term that depends on the

coordinates of both the particle and the field. This interaction term produces

transitions corresponding to energy transfers between the particle and the

electromagnetic field.

It will be shown that the predominant mechanism for energy loss

by 25-Mev electrons is by ionization. This will be described as an elastic

collision process between the incident electron and the atomic electrons.

Also, this collision mechanism could be considered as an inelastic collision

between an incident electron and the atom as a whole,

For this discussion we will put methods (1) and (Z) into one

group and call it energy loss by ionization. Methods (3) and (4) will be put

into another group and called energy loss by radiation or bremsstrahlung.

As was mentioned above, we will show that energy loss by ionization collisions

is much greater than energy losses by radiative-type collisions which give

rise to the emission of photons.

The energy loss by ionization collisions and that loss by

radiative-type collisions have a strikingly different behavior. The energy
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loss due to radiation collisions is nearly proportional to Z 2 and the increase

is nearly linear with energy, while ionization energy losses are proportional

to Z and increase only logarithmically with energy. Therefore, when the

energy of the incident electron E becomes much greater than E then theo C

radiation collision process predominates. If E 0 E . then the ionization

process predominates. Table 3. 1 was taken from Segre 1953). p. 266.

Segre (1953) gives this relationship

(dE /dx) rad E Z
2

(dEo/dx) ion 1600 moc

for the ratio of the radiative loss to the ionization loss. The above relation-

(dE /dx) rad
ship was used to determine the ratio 0 found in table 3. 1. The

(dEo/dx) ion

incident electron energy is given to be 25 Mev.

One can see from table 3. 1 that E - E for iron (Z 26)c O

This means that radiative and ionization losses should be approximately equal

at this point. Indeed, this is shown to be true by observation of the ratio of

losses for iron. At this point the approximation A -- 2Z begins to break

down. Therefore, the concern will be with lower Z materials where the

ionization losses are at least a factor of 2 greater than the radiative losses.

b. Thory

(1) Conservation laws for elastic collisions

For purposes of calculating the angular distribution, it is

assumed that the theory of elastic collisions holds for the interaction of the

incident electron and the atomic electrons. Whatever the forces involved,

the principles of the conservation of energy and momentum must be satisfied,

so that the consequences of these principles remain applicable under all

circumstances.

Such consequences may now be considered by studying the
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disturbance created by the passage of one particle through the field of force

of anotner particle.

Conservation of momentum in the direction of the incident

electron is

Po = p cos 0 + p cos q (3.1)

and normal to the direction of the incident electron is

0 p sin e - p' sin 4p (3.2)

A third relationship between these variables is obtained from the conservation

of energy,

E = E + E'. (3.3)
0

Using the relativistic relationship

pc = T(T+ Zn 0C-) (3.4)

where T is the kinetic energy, and some algebra, one can solve for the

cos e by using the momentum vector diagram in figure 3. 1 and the law of

cosines. The cos 0 becomes

E (E + Z m cMcos - __________ (3.5)

(p0c) (pc)

where

pOc =\/E 0E + Z m c) (3.6)

63



TDR-63-50

and

PC -- E (E + 2 mc 2 ). 13.7)

00
If one evaluates equations (3. 5) and (3. 6) for E ° 0 25 Mev, the cos 0

becomes in its simplest form

cos P = 1.0206 -( (3.8)

Pc

where

P C E (E + 1.022) 13.9)

where the secondary electron is born with energy E in Mev.

(2) Collision cross sections for identical particles

The collision between an incident electron and an atomic electron

requires special treatment because the two electrons are indistinguishable

after the collision. Consider the collision of an incident electron of kinetic

energy E with an atomic electron which was initially free and stationary.

After the collision one of the electrons will have energy E, the other,

(Eo-E). It cannot be determined which electron was the incident electron.

Arbitrarily, the faster electron after the collision is defined as the incident

electron insofar as future collisions are concerned. This is equivalent to

restricting the energy transfer E to values up to Eo/Z. Thus, the maximum

energy transferred to the secondary electron by the incident electron will be

max oZ .

To understand the quantum-mechanical cross sections for

collisions between two electrons, it is helpful to evaluate the classical cross

section first. Evans (1955) gives the classical differential cross section as
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d, (E o E) ZZ-L d (3. 10)
0 mv2 E2mv v

0

This represents the probability that the incident electron loses energy E and

has kinetic energy (E -E) after the collision. But to this must be added the

classical probability that the incident electron loses energy (E 0 -E) and has

kinetic energy E after the collision, which is

d c (E, E -E) Z IL dE (3. 11)
0 Mv (E -E)-0 0

Thus the classical differential cross section for the collision between

identical particles. i. e., the probability that one particle will have kinetic

energy E after the collision, is the sum of the two probabilities, or

dm (E 0 , E) = e dE / 0- + (3.12)
mv Ez

moV o2 E-E [ E °

This cross section applies only for E>E 0-E), i.e., for E<E 0 /Z. For
E>E 0 /2 , the corresponding cross section is zero, because these collisions

are already included in equation (3. 12).

To introduce into the cross section the effects of quantum-

mechanical exchange, and of relativity, M611er treated the problem of the

collision between two free electrons, using the relativistic Dirac theory of

the electron. In M1ler's theory the spin (measured in units of 4' ) and its

magnetic moment (measured in units of e h/2m0 c ) were assumed to take on

the normal values, namely, magnetic moment 0 for particles of spin 0

and I for charged particles of spin I/1 or 1.
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Moler's cross section for extremely relativistic electrons (E > >m c 2 ) is

d, e -- dE E 21 3. 13)

0~ 0

Mo0V 2 E 22  Eo0- E)2E 0 E 0

Equation (3. 13) can be found in Evans (1955), p. 577, and Rossi (1952). p. 15.

It has the same limits as equation (3. 12) and represents the probability that

the slower electron will have energy E after the collision. In equation (3. 10)

through (3. 13), v represents the velocity of the incident electron. In this

case the incident electrons have an energy of 25 Mev, which have a velocity

equivalent to the speed of light for all practical purposes.

Equation (3. 13) can be integrated from E to E 0/o2 to get

S(Eo.E)-2emC _ 1E E E--o -(o- E3. 14)00

where o (E0 . E) is the probability of producing a secondary electron with

energy between E and E0 /2 . The integration is somewhat tedious, but

straightforward, and is not presented in this paper because of its length and

lack of contribution. Thus, the cross section as given in equation (3. 14) will

be used in equation (2. 18) to give the number of secondary electrons produced

while the incident electron passes through the thickness T. Concern is only

with the interactions of the incident electrons and the atomic electrons pro-

ducing secondary electrons. It will be assumed that the tertiary electrons

produced by the secondary electrons can be neglected in comparison with

the secondary electron production.

The theory of the secondary electron production, the probability

of escape and deposition, the range of electrons, and the number and energy

losses shall be the same for incident electrons as for photons as described

in section 2. The theoretical energy losses for charged particles will be

presented next so that we can later compare the calculated and predicted

theoretical numbers.
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(3) Energy losses determined theoretically

The average energy loss by an electron initially with energy E 0

per unit path length is defined by

dE EMAX
-- 2 = NZ E do (E , E) (3.15)
ds .EL 0

3

where N is the number of atoms per cm and EMAX is defined to be equal

E 0 /Z . To evaluate the above integral collisions will be divided into hard and

soft collisions. Namely. hard collisions will be defined as energy transfer

between EMAX and some arbitrary value EH, where the only restriction

on EH is that it be large compared with the binding energy of the electron.

Soft collisions are defined to be collisions where the energy transfer extends

from the arbitrary value EH to the minimum possible energy transfer EL

which is generally of the order of an excitation energy or the ionization

energy of one atomic electron. The hard collision contribution was determined

by substituting equation (3. 13) for d; (E 0 , E) in equation (3. 15) and integrating

the straightforward but tedious function term by term to find

dE oH .ie 4 NZ [ln E o 0. 26] 3.16)

ds mc EH

Since interest is only in high energy secondary electrons, the

soft component will not be considered. Evaluating equation (3. 16) for Z5-Mev

incident electrons and using E H as the ionization potential for aluminum

(165 ev), gives

dE°H = 0.881 Mev/gm /cm 2

ds
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This number will be compared with the results of the computer calculation

in the section on discussion of results.

c.Prcdr

(I) Energy groups

Since the calculations were made on the CDC 1604 high-speed

digital computer, the energy groups can be made as small as desired. How-

ever, it was found that LE = 10 "2 Mev was as small as needed. Any further

reduction in iE only increased the computer time proportionately and did not

improve the calculation significantly to warrant the change. Thus, the energy

groups used are shown in figure 3. 2.

The first energy group starts at E 0 /Z for reasons discussed

in the theory. The lower bound was chosen to be the K shell ionization

potential (165 ev) for aluminum for all runs. This does not present a serious

error for two reasons. (a) Interest is only in high-energy secondary electron

emission. (b) The ionization potential varies linearly with Z , so for low Z

materials the above number is a good average.

(2) Sample division

Sample division is the same as described in section 2. c(Z).

(3) Attenuation

The energy of the incident electron is reduced as it passes

through a sample material. The incident electron is attenuated by calculating

(using methods outlined in section Z. c(4) ) the energy of the particle at the

center of the 4R in question and this is assumed to be the incident electron

energy for the entire ,R .

(4) Sample problem

The calculational method is the same as described in section Z. c

(4) except for the differences mentioned above. Therefore, no sample problem

will be given in this section.
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d. Results

The results are contained in table 3. 2 (Energy Losses and Secondary

Electron Emission Efficiencies as a Function of Thickness for 25 MEV

Electrons) and table 3. 3 (Number of Secondaries which Escape as a Function

of Energy, Average Angle of Emission and Thickness for 25 MEV Electrons).

The data contained in table 3. 2 can be found plotted on figures 3. 3 - 3. 6, and

table 3. 3 and 3. 4 data are plotted on figures 3. 7 - 3. 18.

e. Dsuso

Figure 3. 3 gives S versus thickness. At a thickness of 0.01 gm/
2 3 ecm . S is 7 x 10 se/ie with a constant increase with thickness to approxi-

mately 8 x 10 " se/ie (8 percent) maximum at about 4 gm/cm and then a

decrease to 4. 8 x 10 "2 se/ie at 10 gm/cm Z . The increase is due to more

atomic electrons being made available and the decrease is due to the attenua-

tion of the incident beam.

Figure 3. 4 forms a straight line on log-log paper and is a plot of

Sd versus thickness. The values range from 46 se/ie at 0.01 gm/cm z to

4600 se/ie at 10 gm/cm2 . One would expect the number to become larger

with thickness.

Figures 3. 5 and 3. 6 will be considered together. The former is a

plot of the energy of escape E, and the latter is a plot of the energy de-

posited Ed per unit path length as a function of thickness. Adding these two

curves point for point gives the energy liberated by the incident beam; this
2value ranges from 0. 849 to 0. 904 Mev/gm/cm . The predicted value as

zgiven by section 3. b(3) is 0. 881 Mev/gm/cm . This is an indication that

the calculational method is correct.

Figures 3. 7 to 3. 17 contain the energy and angle of emission spectra
-for 2S-Mev electrons for thicknesses in the range from 0. 01 to 10 gm/cm

The energy spectrum is a plot of the number of secondaries escaping per

incident electron as a function of the energy of escape.

Figure 3. 18 is a plot of all the energy spectra as a relative per-

spective of their intensities as a function of thickness. The intensity

69



TDR-63-50

increases with thickness in general. The most probable energy of escape Ee

occurs at about 0. 15 Mev for almost all the thicknesses.
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Table 3.1

Critical Energy E0 and the Ratio of' the
Radiative Loss to the Ionization Loss for

Various Materials

E (dE0 /'dx) rad

Mterials Z (6&e) (dEO/dx) ionl

Hydrog~en i340 0.0313

Carboii o 103 0.lb6

A.luminhum 13 47 0.407

Iron 20 24 Oi3

Copper 29 21i.5 0.)07

Lead 632 0.9 2.57U

Air 7.36 63.0 0.230

Water 7.23 93 0.227
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Table 3.2

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of

Thickness for 25 Mev Electron

T Es Ed  Se  Sd

(Cp/cm2 ) (mev/gm/cm2 ) (Mev/ 1 mcn2 ) (se/ie) (se/ie)

10.0 4.17-3* 6.45-1 4.33-2 4.67 + 3

5.0 2.55-2 d.53-1 7.33-2 2.34 + 3

2.5 6.85-2 3.21-1 7.51-2 1.17 + 3

1.0 1.32-1 7.37-1 6.01-2 4.67 + 2

0.75 1.51-1 7.50-1 5.46-2 3.51 + 2

0.5 1.76-1 7.24-1 4.71-2 2.34 + 2

0.25 2.17-1 6.05-1 3.56-2 1.17 + 2

0.1 2.65-1 6.37-1 2.35-2 4.67 + 1

0.05 3.00-1 6.o4-1 1.63-2 2.34 + 1

0.025 3,29-1 5.73-1 1.17-2 1.17 + 1

0.01 3.66-1 5.35-1 7.06-3 4.66 + o

4.17 x io-3
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I, p

Figure 3. 1 Trajectories in the scattering plane for
the incident electron Ec, the scattered
electron El. and the secondary electron
E. The momentum is represented by p
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Figure 3. 2 Energy groups for the 25 Mev
electron program
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4. SECONDARY ELECTRON EMISSION BY A 600 KV PULSED X-RAY

a. General remarks

The remarks in this section concern a 600-kv Fexitron Flash X-Ray

System manufactured by Field Emission Corporation. McMinnville, Oregon.

The spectrum used for the calculations to follow was measured on the Fexitron

located at Sandia Corporation, Albuquerque, New Mexico. It is capable of

delivering 1200 megawatts in 0. 1 i sec with impulse currents of Z, 000 amperes

at 600-kv a tode potential.

b. Then

The theory for this section shall be the same as section 2.b.

c. Procedur

(1) Energy groups

The Bouchard (1962) energy spectrum, figure 4. 1, measured at

the Sandia Corporation 600-kv Flash X-Ray System was used to determine the

weighting as a function of energy group. Table 4. 1 contains the energy groups

and the spectrum weighting factors as taken from figure 4. 1.

The quantity E NE) in table 4. 1 is used in this section in the

same context as Nm in section 2. c(1).

(2) Sample division

The sample division in this section is the same as section 2. c(Z).

(3) Attenuation

The attenuation is the same as section 2. c(3).

(4) Sample problem

The calculations were done in a very similar manner to those
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in section 2. c(4) except for different energy groups and weighting factors.

d. Results

The results are contained in table 4. 2 (Energy Losses and Secondary

Electron Emission Efficiencies as a Function of Thickness for 600 KV X-rays),

table 4. 3 (Number of Secondaries which Escape as a Function of Energy,

Average Angle of Emission and Thickness for 600 KV X-rays) and table 4.4

(Number of Secondaries which Escape as a Function of Angle and Thickness

for 600 KV X-rays). The data contained in table 4. 2 can be found plotted on

figures 4. 2 - 4. 5. and table 4. 3-4. 4 data are in figures 4.6-4. 7.

Tables 4. 2 and 4. 3 contain the data from the computer. The results

of these tables are plotted in figures 4. 2 - 4. 7.

Figure 4. 2 gives the Se versus the thickness. For small thicknesses

the value Se increases to a maximum of 5 x 10 . and stays at this value over

a large range of thicknesses. However, it begins to decrease for the larger

thicknesses to a value of 2 x 10 . 4 at 10 gm/cm

Sd versus thickness forms a straight line on log-log paper, figure

4. 3. It increases from 10 . at 0. 01 gm/cm to I at 10 gm/cm

The sum of figures 4.4 and 4.5 gives 8.08 x 10 . 3 Mev/gm/cm 2 for

the energy loss by the incident beam which is a factor of three less than the

total energy loss. Since we are only concerned with the high energy component

this seems reasonable for 600 KV X rays.

In figures 4. 6 and 4. 7, one will find the energy spectra and angle-of-

emission spectrum plotted. The angle-of-emission spectra were all almost

the same value (see table 4. 3); therefore only one is presented. In figure 4.6,

the intensities increase with decreasing thicknesses in general. However,

there is a striking difference in these spectra from the previous ones because

these do not reach a maximum up to 0. 05 Mev. The spectra are presented

together so one can get a relative perspective of their intensities.
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Table 4. 1

&er~y Groups and WeiLhtin.,- Factors
For 600 KV X-rays

.00 - .05 0.*000

.05 - .10 1.050

.10 - .15 2.300

.15 - .20 2.600

.20 - .25 2.750

.25 - .30 2.*600

.30 - .35 2.625

.35 - .40 2.300

.40 - .45 1.650

.45 - .50 1.350

.50 - .55 0. (OO

.55 - .6o 0.250
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Table 4.2

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of

Thickness for 600 KV X- rays

T EB Ed Se  Sd

(ui 2 (Mol/nl 2) (Mevgl/=2) (se/i- ) ()e/i

10.0 1.7o-6 8.08-3 1.95-4 1.13 0

5.0 5.42-6 8.08-3 3.17-4 5.63- 1

2.5 1.37-5 8.08-3 4.04-4 2.81- 1

1.0 3.94-5 8.08-3 4.67-4 1.12- 1

0.75 5.37-5 8.03-3 4.80-4 8.39- 2

0.50 8.28-5 7.98-3 4.91-4 5.5b- 2

0.25 1.69-4 7.93-3 5.03-4 2.76- 2

0.10 4.29-4 7.69-3 5.11-4 1.07- 2

0.05 8.62-4 7.26-3 5.14-4 5.11- 3

0.025 1.72-3 6.39-3 5.13-4 2.30- 3

0.01 3.64-3 4.46-3 4.28-4 6.96- 4

3.51 x I0-5
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Figure 4. 7 Angle of emission spectrum for 600-ky X rays.
The numbers 10, 5, 2. 5 .... etc..* are thick-
nesses in gm/cm2 -
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5. ASSUMPTIONS AND PERCENT ERRORS.

a. Low-Z materials were assumed (A ZZ). that is, materials where

the atomic mass is equal to two times the atomic number. However, these

calculations apply for materials where atomic mass is not identically equal

to two times the atomic number because there is a cancelling effect on atomic

number and atomic mass because of the range-energy relationships

used. There is essentially no error involved.

b. Interactions are described by straight-line motion using semi-

empirical range-energy curves for aluminum. This is not considered to be

an error of any consequence for low-Z materials. However, it would be

better to make the calculations for the range-energy curves for whatever

material is being used.

c. The angular distribution was taken into account assuming elastic

collisions with the incident particle and the atomic electrons. No error is

anticipated.

d. Attenuation of the incident beam was also evaluated and included in

the calculations. No error is anticipated.

2
e. Plates were used which are thin (0. 01 to 10 gm/cm ) compared with

the range of 25-Mev electrons (13 gm/cm 2).

f. Only secondaries (delta rays) produced by the primary electrons are

considered. Thus the low-energy secondary electron ionizations, which are

proportional to the total number of low-energy electrons produced have been

ignored. The error here is very small; and the best calculation is about

3 - 4 percent.

g. The integral of the cross section for production of a secondary

electron times the probability for escape from the surface has been calculated,

assuming the latter to be proportional to the range of the secondary. No

error is anticipated.

h. The atomic electrons have been assumed to be free (kinetic energy

after the collision is much greater than the binding energy) and stationary

(the kinetic energy before the collision is much smaller than the kinetic
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energy after the collision). No error is anticipated.

i. The density effect was not taken into account. Each atom was

considered as an isolated event with no interference from other atoms in the

neighborhood. In other words, the collisions were considered as close

collisions. No error is anticipated.

J. The Compton interaction was assumed to be the predominant

mechanism for energy loss in the prompt fission gamma and 600-kv X-ray

calculation. The error is negligible for prompt fission gammas; however,

the photoelectric effect should be included for higher Z materials in the

X-ray calculation.

6. RESULTS

A summary of some of the most important results is given in table 6. 1.

As can be observed from this table, the secondary electron emission efficiency

for 600-kv X rays Ls 0. 05 percent with the prompt fission photon efficiency

approximately an order of magnitude greater and the Z5-Mev electron

efficiency about two orders of magnitude greater.

The energy losses by the incident photon beams are approximately the

same and agree very well with the predicted value. The energy loss by the

incident 25-Mev electron beam agrees almost identically with the predicted

value. The energy loss by the Z5-Mev electron beam is about a factor of five

greater than the energy losses by the photon beams.

The number of secondary electrons deposited per incident particle Sd is

1 for the two photon beams but 4, 600 for the Z5-Mev electron beam. This

indicates that the electron beam has a stronger tendency to produce low-

energy secondaries that do not escape.

The energy and angle-of-emission spectra are given in the various

sections.

The results of this paper give the experimenter the basic parameters

necessary for comparing the transient radiation effects on electronic com-

ponents for various types of radiation fields. With a slight modification of

the results, one can plot curves for the proper dose for irradiating a sample
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with the machine to give the same effects one would expect from a prompt

fission gamma radiation field. In this way one is able to properly simulate

in the laboratory the effects expected in a nuclear environment, since an

important part of a nuclear environment is the prompt fission gamma radia-

tion field.

7. CONCLUSIONS AND RECOMMENDATIONS.

An accurate method has now been established for determining the

secondary electron emission efficiencies as a function of energy of escape.

their angle of emission, and many other basic parameters for comparing

different radiation fields for transient radiation effects work in the laboratory.

It has been found that the secondary electron emission efficiency for

25-Mev electrons is 8. 0 percent followed by the prompt fission gamma

efficiency of 0. 3 percent and finally the 600-kv X-ray efficiency is 0. 05 percent.

The energy spectra were about the same for all three types of radiation

fields with respect to their intensities. The shapes were approximately the

same for Z5-Mev electrons and prompt fission gamma. However, the 600-kv

X-ray spectra did not reach a maximum down to 0. 05 Mev.

Since these are basic parameters, they will be useful in many ways. The

individual experimenter is left the task of adapting these parameters to best

fit his needs. For example, if one is interested in keeping the secondary

electron emission efficiency the same for his laboratory radiation field and

for a nuclear environment, it will be necessary to plot a curve relating these

parameters. On the other hand, if an experimenter is interested in keeping

the energy deposited equal, another curve can be plotted, etc.

The 600-kv X-ray calculation should be used only for low-Z material

because no photoelectric effect was considered.
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APPENDIX A

PROMPT FISSION GAMMA PROGRAM

This appendix contains the computer program and a sample

printout for prompt fission gamma radiation from UZ3 5 fissions. The

program was written for the CDC 1604 high-speed digital computer at

AFSWC.
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APPENDIX B

Z5-MEV ELECTRON PROGRAM

This appendix contains the computer program and a sample

printout for Z5-Mev electrons from a linear accelerator. The program

was written for the CDC 1604 high-speed digital computer at AFSWC.
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.2 49761 -IjU3 56,24 5.641F-004

.3 4,QE-U 54.3.3 9.ul6E-0U4
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#70 so do092E.003 44.49 1,569E-003
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01 lu 1,64E.rU3 41.8U 1.58UE-003
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I..4u 1.. 1.03ih.t3U3 36.43 1.902F-003

t.Si 1.6 V,2U3Eouu4 -35.62 1.4266-0U3
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Itseu 11.3 d,3941oO5 12.2t 2.6936-004

11830 11.4 d#038Ewuuo 12.12 2.3136-004

11.4, 1195-1 1,030EOUUS 12,oS 1.1606-004

11,050 11.6 1063860006 12.00 1.892g.009



T 76iOO G /(;Mid@

L 0u se
(deg/) (deg.) (se/ie)

24.Uu ?'.u 2.48UF-fni
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APPENDIX C

bOO-KV X-RAY PROGRAM

This appendix contains the computer program and is sample

printout for bOO-ky X-rays from , pulsed X-ray sourci'. The Program

was written for the CDC 1604 high-speed digital computer at AFSWC.
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ACCpau 1. cr. *. -AC 5 .--

ACra.lvo4cr?

Yon RI-AP S~.TT
I~F FnV'j 47ut

7(11 PHINT I aTT
RsrAPI +TT*ACC?
flILl *TT'ACC -----.-.. ,

XiPO7mij :u
DO ho '.,25

a ( j )~ a

K .0

4 RE AP S l vFP#FN
I +~~e
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At :Fj.rif 9A4

THtIEAL-AC' ~r(rOS1N)*57.'4 97195
AIPj.AzpWAR*.576? -- -

IF( (F 17 v 7 v9
9 Tz(FoikrISTH-I4SAR)oAIPWA

T1 ml
CAL1 PPtu;
PF-:PT
TIQw6 PF(ClN6T*SIG*.w-T1))
SI S'P*PE*FLH'Tf)
SDzCP*i1..-PE 3eDER.TIO

10 TASTAs. RATACCj1- -

X07rx'j7+nFLRST
DFU&lr.I LPS.T*ACCI

CALI PP'Th

q'2 T=T-PEI~A

13 RLasw4t rpti )ALPH~A

GGi TO' it,

16 XUUSI.*p
J3XIt4TF(1'* n. )#1

W(J 4W40*)TWETA- - --..

CI J)*CtJ)+RL
JzXINdp( TIFTA.9%)+1
AO(.)ZAU(J)*SL
EL3P4 *y(.i
FFIUPg +SpF9AR*1EL P-YO

So0 RaQ#Acrj

DtLR8UPLNOACCj

toot GU I( c~i01.1&I) Pi
pool t22 .

Or*Cc3

an) in

17 11- E tiL+ $



sFflpsSF;P+.FLbP

IF ( IY-p4) 19.18,16
i8 PFRI T t#YT

xx YX3;(ptA/SIJME
Pf.ljN!T PPF1,E2.EL .SFL,EDP.Si.DP,4qSL.XXXSSIPXXY
GO Tfl 4

20 CONT INi':
PRINT isTT

---- - Dr) 43 mei 0 30
1F~fl(Jil 43p43#39

59 KuI(.1

XmFJi1lp.

III PRjINT sin*Y,Y#C(J),7-XW
IF (YMOnFl(K-25)) 43.47.43

42 PR4INT to T -
43 CONT I NUE

PRINUT 1 .TT
DO o ; o

PRIN~T *9SU#YpXAO(J)
IF(N-291 S . . . . . . . . . .

92 Koo0
PRIN~T WiT

So CONlINuIE
.GO~~~4 -74.- 7O----

44 CONTINiiE
CAUl T'IMPOF

Son FORMATc1X2F.3,EI3.3#rl. -3./

2 FOQpMAT2F.36Fl2.3/)

FORI'ATtvVS.ovF10.q).
END
SUSF.OUyIFkE PROB
COMPON T#PTaRAIlf

-- -I (A ---- - ------- --- -------_ __

AJP m (1)
4RTA xx
I AC C2

VTA S9flN
IDA xx

-. .. . . . .----- ---- 4 - .
11) 1 IIA C2

STA SIGN
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t.A T
fTA XY

4) FMU XY
FTA X2
t V A XY

-- fsW- -... r- -

AJlp M (2)
1 DA C2
pF tV X2
~TA ypp

FMU C4

FMU C6
FHtJ Yp?
FAD) CS
F"U C7
FmU X22

F 1U Ce
F mu X22
FAD CS
Ft41J C9
rmu X22

-...---.-. f go..---I Co

FMU X2
FAD ps
STA ElF
I AC X(2
STA X(2

FNA )(2-
PTJ FXPF

4 pyJ FRIOR. -. .

4 FP4U CID

P1W FRF

SLJ (3)
121 1 AC 1(2

FDV Di
FAD D2
Fmu X2

FlU D4

FAD 0

f1 "' 2 ..07

FAD D9
FOU C2
FMU X(2

F#(U 1(2
FDW C9

154



MJ Di1n

A0 C?
F0v RAIT 10 -

c,;IA PT
Rim riiwi4

2 r Fc .5
r3 ~ ~ prr f477nL

r4 [IF1.

r6 n)Fc 9.
r,7 FC- 7.
rb r .c 5.

r9 FC 3.

Plo TEFC -. 564tAQ6)

nl? D)7c .0 76923.S,
P3 IF 6.
Dl4 rl .0909090'91

R7 ) -( - .25
n 8 DFC .1428571 41

P9 (F-c .6
DID rnEc 1.1283742

RF p, S s
PfF 11 FP
P F N 1)XP

5"9RPfUTINE TIMFON
r- "A - -ooooo--- CLFAR--ACW4pgtATOR.---
r.YF 7 00011" TEST CIANNPI. I FOR ACTIVE.
STA 00000 CLEAR CLOCK 004TEIOTS TO ZERO.

4 FVF 0lOGOR START CLOCK.
PT iiiN

END
Sj~onuy!#E TIMFOFF--- -------- - -

4 t nP DUMY PTATFMENT-
SFxi 7 ocOOli TkqT CloANPIPL I FOR ACTIVE.#

FX? 020Op SlOP TI-F RFAL-TIME CLOCK.
InA 00000 CLOCKg fONTFNTS TO ACCUPtDLAYORs
!zTA KLiOCK CLOCK ;ONTFNTS TO *KLOCK**

PPINT i.TIME
F+ TIuHN
FORmATWi RIJN TIMF .V9.P#9H MINkUTES.//)

f NIU
f too ............. ---- *
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(Note: Headings are the same as on page 124)

01b 1 yu?6EFlu3---- 42.i . 3.513ir-0O4-

*In2 4oO63E.OOj 4u.39 4#625F.0U

.2 3t 6.834EsouS 3 9 .ii7 9,566E-006
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(Note: Headings are the same as on page 127)

To .9100

42'.Op 44.nUo 3.01OF-00r

44.Or, 4A.ftO 3.95bEflO4
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